Skip to content

B cell Lineage Tree

A class to model B cell lineage trees.

Attributes:

Name Type Description
clonotype str

The name of the clonotype.

tree BaseTree

The rooted tree topology.

csr_obj float

The current CSR likelihood of the Lineage tree (default: 0).

isotype dict

The isotype labels of the Lineage tree nodes.

shm_obj float

The current SHM Parsimony score of the Lineage tree (default: 0).

sequences dict

The BCR sequences of the Lineage tree nodes.

Notes

A B cell lineage tree is a rooted tree with nodes labeled by BCR sequences (concatenated heavy and light chain) and isotypes. The somatic hypermutation (SHM) parsimony score is the total number of base substitutions within the sequences, and the class switch (CSR) likelihood is the likelihood of the isotype labels given an isotype transition probability matrix.

Source code in tribal/lineage_tree.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
@dataclass
@total_ordering
class LineageTree:
    """
    A class to model B cell lineage trees.

    Attributes
    ----------
    clonotype : str
        The name of the clonotype.
    tree : BaseTree
        The rooted tree topology.
    csr_obj : float 
        The current CSR likelihood of the Lineage tree (default: 0).
    isotype : dict
        The isotype labels of the Lineage tree nodes.
    shm_obj : float 
        The current SHM Parsimony score of the Lineage tree (default: 0).
    sequences : dict
        The BCR sequences of the Lineage tree nodes.

    Notes
    -----
    A B cell lineage tree is a rooted tree with nodes labeled by BCR sequences (concatenated heavy and light chain) and
    isotypes. The somatic hypermutation (SHM) parsimony score is the total number of base substitutions within the sequences, and 
    the class switch (CSR) likelihood is the likelihood of the isotype labels given an isotype transition probability matrix.
    """

    clonotype: str
    tree: BaseTree= None
    csr_obj: float = 0
    isotypes: dict = field(default_factory=dict)
    shm_obj: float = 0
    sequences: dict = field(default_factory=dict)

    def __post_init__(self):
        """Initialize the objective tuple and root."""
        self.objective = (self.shm_obj,self.csr_obj)
        self.root = self.tree.root

    def _validate_item(self, item):
        """Check comparison items is an instance of LineageTree."""
        if isinstance(item, (LineageTree)):
            return item
        raise TypeError(
            f"Score expected, item got {type(item).__name__}"
        )
    def __eq__(self, __value: object) -> bool:
        """Check if two lineage tree items have the same objective score."""
        item = self._validate_item(__value)
        return self.objective ==item.objective

    def __lt__(self, __value: object) -> bool:
        """Check if a LineageTree is less than another."""
        item = self._validate_item(__value)
        return self.objective <item.objective

    def __str__(self):
        """To string method."""
        mystr = f"B cell lineage tree for {len(self.tree.get_leafs())} cells"
        mystr += f"\nRoot id: {self.root}"
        mystr += f"# of nodes: {len(self.tree.T.nodes)}"
        mystr +=  f"\nObjective\n----------\nSHM: {self.shm_obj}\nCSR: {self.csr_obj}"
        return mystr

    def to_pickle(self, fname):
        """Pickle the B cell lineage tree.

        Parameters
        ----------
        fname : str
            the path to where the pickled object should be saved,
        """
        with open(fname, 'wb') as file:
            pickle.dump(self, file)

    def _seq_len(self):
        for _, val in self.sequences.items():
            return len(val)

    def compute_csr_likelihood(self, transmat):
        """Compute CSR likelihood of a lineage tree for a given isotype transition probability matrix.

        Parameters
        ----------
        transmat : numpy.array
            The isotype transition probability used to compute the CSR likelihood.

        Returns
        -------
            The class switch recombination (CSR) likelihood.
        """
        transmat = -np.log(transmat)

        iso = self.isotypes
        score = 0
        try:
            nodes = self.tree.preorder_traversal()
            for n in nodes:
                t = iso[n]
                for c in self.tree.children(n):
                    s = iso[c]
                    score += transmat[t, s]
        except:
            raise ValueError("Invalid isotypes or tree. \
                             First run isotype parsimony or refinement functions.")

        self.csr_obj = score
        return self.csr_obj


    def get_id(self):
        """Get the internal id of the tree topology. Useful for mapping refined trees back the to the unrefined tree in the parsimony forest.

        Returns
        -------
        : int
            the internal id of the tree topology
        """
        return self.tree.id

    def ancestral_sequence_reconstruction(self, alignment,
                           alphabet=("A", "C", "G", "T","N", "-"), 
                           cost_function=None):
        """Infer the ancestral BCR sequences of the internal nodes given an alignment.

        Parameters
        ----------
        alignment : dict
            a dictionary with leaf labels and root id as keys and the BCR sequence as value.

        alphabet : tuple
            the valid alphabet for BCR sequences, default:  ("A", "C", "G", "T","N", "-")

        cost_function : dict|None
            the cost function for substitution of a single nucleotide base. If None, the 
            standard 0/1 cost function is used for matches and mismatches. If dictionary
            all pairs of the elements in the alpabet should be be includes in the keys.

        Examples
        --------
        Here is an example of how to reconstruct ancestral sequences::

        ```python  
            from tribal import clonotypes, LineageTree
            id = "Clonotype_1036"
            clonotype = clonotypes[id]
            forest = clonotype.get_forest()
            lt = LineageTree(id=id, tree = forest[0])
            shm_score, sequences = lt.ancestral_sequence_reconstruction(clonotype.alignment)
            print(lt)
        ```

        Returns
        -------
        : float
            a float with the somatic hypermutation (SHM) parsimony score for the lineage tree

        : dict
            a dictionary containing the BCR sequence labels of the lineage tree

        """     
        alignment = {k: list(alignment[k]) for k in alignment}
        sp = SmallParsimony(self.tree, 
                            alphabet= alphabet,
                            cost = cost_function)
        self.shm_obj, sequences = sp.sankoff(alignment)
        self.sequences = {key : "".join(value) for key, value in sequences.items()}

        return self.shm_obj, self.sequences



    def isotype_parsimony(self, isotype_labels:dict, transmat:np.array):
        """Infer the isotype of the B cell lineage tree using weighted parsimony.

        Parameters
        ----------
        isotype_labels : dict
            a dictionary with leaf labels and root id as keys and isotypes as values.  
        transmat : numpy.array
            the isotype transition probability used to compute the CSR likelihood.  

        Examples
        --------
        Here is an example of how to infer isotypes::

        ```python
            from tribal import clonotypes, probabilities, LineageTree

            id = "Clonotype_1036"
            clonotype = clonotypes[id]
            forest = clonotype.get_forest()
            lt = LineageTree(id=id, tree = forest[0] )
            csr_likelihood, isotypes = lt.isotype_parsimony(isotype_labels= clonotype.isotypes,
                                                                        transmat=probabilities )
            print(lt)
        ```

        Returns
        -------
        csr_obj : float
            a float with the class switch recombination likelihood score for the lineage tree.  
        isotypes : dict
            a dictionary containing the isotypes of the lineage tree.  
        """
        transmat = -np.log(transmat)
        states = list(range(transmat.shape[0]))
        sp = SmallParsimony(self.tree, alphabet=states,cost=transmat)
        self.csr_obj, self.isotypes = sp.sankoff(isotype_labels)


    def refinement(self, isotype_labels: Dict[str, str], transmat: np.ndarray) -> Tuple[float, Dict[str, str]]:
        """Solves the most parsimonious tree refinement problem (MPTR).

        Parameters
        ----------
        isotype_labels : dict
            A dictionary with leaf labels and root id as keys and isotypes as values.
        transmat : numpy.array
            The isotype transition probability used to compute the CSR likelihood.

        Examples
        --------
        Here is an example of how to refine a lineage tree:

        ```python
        from tribal import clonotypes, probabilities, LineageTree

        id = "Clonotype_1036"
        clonotype = clonotypes[id]
        forest = clonotype.get_forest()
        lt = LineageTree(id=id, tree=forest[0])
        csr_likelihood, isotypes = lt.refinement(isotype_labels=clonotype.isotypes, transmat=probabilities)
        print(lt)
        ```

        Returns
        -------
        float
            A float with the class switch recombination likelihood score for the lineage tree.  

        dict
            A dictionary containing the isotypes of the lineage tree.  
        """
        cost = -np.log(transmat)
        cg = ConstructGraph(cost, isotype_labels, root_identifier=self.root)
        fg = cg.build(self.tree)

        st = MPTR(fg.G,
                  self.tree.T,
                  fg.find_terminals(),
                  fg.iso_weights,
                  fg.tree_to_graph,
                  root=self.root)

        self.csr_obj, tree = st.run()

        tree, self.isotypes = cg.decodeTree(tree)
        self.tree = BaseTree(tree, self.root, self.tree.id, self.tree.name)

        return self.csr_obj, self.isotypes

    def draw(self,
            fname,
            isotype_encoding=None,
            show_legend=False,
            show_labels=True,
            hide_underscore=True,
            color_encoding = None,
            dot = False):
        """Visualization of the current B cell lineage tree saves as a png or pdf.

        Parameters
        ----------
        fname : str
            The filename where the visualization should be saved.  
        isotype_encoding : list
            The list of the isotype labels to use.  
        show_legend : bool
            Optionally display the legend of the isotype colors (default=True).  
        show_labels : bool
            label the nodes by the sequence label
        hide_underscore : bool
            internal nodes that undergo refinement will have an underscore and copy number appended
            to the label. Setting this to true hides the underscore during visualization and retains 
            only the original label.
        color_encoding : dict, optional
            optional dictionary that maps isotype encoding to a color, if None, the default
            color palette is used.
        dot : bool
            if the file should be saved as a dot file, otherwise it will be saved
            as a png or pdf, depending on the file exentsion of fname
        """
        parents = self.get_parents()
        dt = DrawTree(parents, 
                    self.isotypes,
                    show_legend=show_legend,
                    root=self.root,
                    isotype_encoding=isotype_encoding,
                    show_labels=show_labels,
                    hide_underscore=hide_underscore,
                    color_encoding=color_encoding)
        if not dot:
            dt.save(fname)
        else:
            dt.save_dot(fname)


    def postorder_traversal(self) -> list:
        """Perform a postorder traversal of the lineage tree."""
        return self.tree.postorder_traversal()


    def preorder_traversal(self) -> list:
        """Perform a preorder traversal of the lineage tree."""
        return self.tree.preorder_traversal()

    def parent(self,n):
        """Identify the parent of a specified node.

        Parameters
        ----------
        n: str | int
            id of query node.

        Returns
        -------
           the parent of query node n.
        """
        return self.tree.parent(n)

    def children(self, n):
        """
        Identify the set of children of a specified node.

        Parameters
        ----------
        n : str
            ID of the query node.  

        Returns
        -------
            A list of children of node `n`.
        """
        return self.tree.children(n)

    def is_leaf(self,n):
        """Check if node is a leaf."""
        return self.tree.is_leaf(n)


    def get_leafs(self):
        """
        Identify the leafset of the lineage tree.

        Returns
        -------
            the leafset of the lineage tree.

        """
        return self.tree.get_leafs()

    def get_parents(self):
        """Identify the part of each node in the lineage tree.

        Returns
        -------
            a mapping of each node in the lineage tree to its parent node.

        """
        return self.tree.get_parents()


    def save_tree(self,fname):
        """Write the parent dictionary of the lineage tree to a file.

        Parameters
        ----------
        fname : str
            filename where the file should be saved 
        """
        parents = self.get_parents()
        save_dict( parents, fname)

    def save_edges(self, fname):
        """Write the edge list of a lineage tree to a file.

        Parameters
        ----------
        fname : str
            filename to where edge list should be saved 
        """
        self.tree.save_edges(fname)


    def get_edge_dataframe(self):
        """Obtain the edge list of the lineage tree as a pandas.DataFrame."""
        return self.tree.get_edge_df()

    def write(self, outpath:str, isotype_encoding=None, tree_label=None):
        """Write the lineage tree data to files.

        Parameters
        ----------
        outpath : str
            the path to file the files should be written.  
        isotype_encoding : list, optional
            the ordered isotype labels  
        """
        if tree_label is None:
            tree_label = ""
        else:
            tree_label = f"{tree_label}"
        clono_name = self.clonotype
        if isotype_encoding is not None:
            isotypes = {}
            for key, iso in self.isotypes.items():
                if iso >=0 and iso < len(isotype_encoding):
                    isotypes[key] = isotype_encoding[iso]
                else:
                    isotypes[key] = iso
            isotype_encoding = isotype_encoding

        else:
            isotypes = self.isotypes
            isotype_encoding = None


        if not os.path.exists(outpath):
            os.makedirs(outpath)

        write_fasta(f"{outpath}/{clono_name}_sequences{tree_label}.fasta", self.sequences)
        save_dict(f"{outpath}/{clono_name}_isotypes{tree_label}.csv",isotypes)
        self.save_edges(f"{outpath}/{clono_name}_edge_list{tree_label}.txt")
        self.draw(f"{outpath}/{clono_name}_tree{tree_label}.png",
                    isotype_encoding=isotype_encoding,
                    hide_underscore=False,
                    show_legend=True)

__eq__(__value)

Check if two lineage tree items have the same objective score.

Source code in tribal/lineage_tree.py
62
63
64
65
def __eq__(self, __value: object) -> bool:
    """Check if two lineage tree items have the same objective score."""
    item = self._validate_item(__value)
    return self.objective ==item.objective

__lt__(__value)

Check if a LineageTree is less than another.

Source code in tribal/lineage_tree.py
67
68
69
70
def __lt__(self, __value: object) -> bool:
    """Check if a LineageTree is less than another."""
    item = self._validate_item(__value)
    return self.objective <item.objective

__post_init__()

Initialize the objective tuple and root.

Source code in tribal/lineage_tree.py
50
51
52
53
def __post_init__(self):
    """Initialize the objective tuple and root."""
    self.objective = (self.shm_obj,self.csr_obj)
    self.root = self.tree.root

__str__()

To string method.

Source code in tribal/lineage_tree.py
72
73
74
75
76
77
78
def __str__(self):
    """To string method."""
    mystr = f"B cell lineage tree for {len(self.tree.get_leafs())} cells"
    mystr += f"\nRoot id: {self.root}"
    mystr += f"# of nodes: {len(self.tree.T.nodes)}"
    mystr +=  f"\nObjective\n----------\nSHM: {self.shm_obj}\nCSR: {self.csr_obj}"
    return mystr

ancestral_sequence_reconstruction(alignment, alphabet=('A', 'C', 'G', 'T', 'N', '-'), cost_function=None)

Infer the ancestral BCR sequences of the internal nodes given an alignment.

Parameters:

Name Type Description Default
alignment dict

a dictionary with leaf labels and root id as keys and the BCR sequence as value.

required
alphabet tuple

the valid alphabet for BCR sequences, default: ("A", "C", "G", "T","N", "-")

('A', 'C', 'G', 'T', 'N', '-')
cost_function dict | None

the cost function for substitution of a single nucleotide base. If None, the standard 0/1 cost function is used for matches and mismatches. If dictionary all pairs of the elements in the alpabet should be be includes in the keys.

None

Examples:

Here is an example of how to reconstruct ancestral sequences::

    from tribal import clonotypes, LineageTree
    id = "Clonotype_1036"
    clonotype = clonotypes[id]
    forest = clonotype.get_forest()
    lt = LineageTree(id=id, tree = forest[0])
    shm_score, sequences = lt.ancestral_sequence_reconstruction(clonotype.alignment)
    print(lt)

Returns:

Type Description
float

a float with the somatic hypermutation (SHM) parsimony score for the lineage tree

dict

a dictionary containing the BCR sequence labels of the lineage tree

Source code in tribal/lineage_tree.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def ancestral_sequence_reconstruction(self, alignment,
                       alphabet=("A", "C", "G", "T","N", "-"), 
                       cost_function=None):
    """Infer the ancestral BCR sequences of the internal nodes given an alignment.

    Parameters
    ----------
    alignment : dict
        a dictionary with leaf labels and root id as keys and the BCR sequence as value.

    alphabet : tuple
        the valid alphabet for BCR sequences, default:  ("A", "C", "G", "T","N", "-")

    cost_function : dict|None
        the cost function for substitution of a single nucleotide base. If None, the 
        standard 0/1 cost function is used for matches and mismatches. If dictionary
        all pairs of the elements in the alpabet should be be includes in the keys.

    Examples
    --------
    Here is an example of how to reconstruct ancestral sequences::

    ```python  
        from tribal import clonotypes, LineageTree
        id = "Clonotype_1036"
        clonotype = clonotypes[id]
        forest = clonotype.get_forest()
        lt = LineageTree(id=id, tree = forest[0])
        shm_score, sequences = lt.ancestral_sequence_reconstruction(clonotype.alignment)
        print(lt)
    ```

    Returns
    -------
    : float
        a float with the somatic hypermutation (SHM) parsimony score for the lineage tree

    : dict
        a dictionary containing the BCR sequence labels of the lineage tree

    """     
    alignment = {k: list(alignment[k]) for k in alignment}
    sp = SmallParsimony(self.tree, 
                        alphabet= alphabet,
                        cost = cost_function)
    self.shm_obj, sequences = sp.sankoff(alignment)
    self.sequences = {key : "".join(value) for key, value in sequences.items()}

    return self.shm_obj, self.sequences

children(n)

Identify the set of children of a specified node.

Parameters:

Name Type Description Default
n str

ID of the query node.

required

Returns:

Type Description
A list of children of node `n`.
Source code in tribal/lineage_tree.py
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def children(self, n):
    """
    Identify the set of children of a specified node.

    Parameters
    ----------
    n : str
        ID of the query node.  

    Returns
    -------
        A list of children of node `n`.
    """
    return self.tree.children(n)

compute_csr_likelihood(transmat)

Compute CSR likelihood of a lineage tree for a given isotype transition probability matrix.

Parameters:

Name Type Description Default
transmat array

The isotype transition probability used to compute the CSR likelihood.

required

Returns:

Type Description
The class switch recombination (CSR) likelihood.
Source code in tribal/lineage_tree.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def compute_csr_likelihood(self, transmat):
    """Compute CSR likelihood of a lineage tree for a given isotype transition probability matrix.

    Parameters
    ----------
    transmat : numpy.array
        The isotype transition probability used to compute the CSR likelihood.

    Returns
    -------
        The class switch recombination (CSR) likelihood.
    """
    transmat = -np.log(transmat)

    iso = self.isotypes
    score = 0
    try:
        nodes = self.tree.preorder_traversal()
        for n in nodes:
            t = iso[n]
            for c in self.tree.children(n):
                s = iso[c]
                score += transmat[t, s]
    except:
        raise ValueError("Invalid isotypes or tree. \
                         First run isotype parsimony or refinement functions.")

    self.csr_obj = score
    return self.csr_obj

draw(fname, isotype_encoding=None, show_legend=False, show_labels=True, hide_underscore=True, color_encoding=None, dot=False)

Visualization of the current B cell lineage tree saves as a png or pdf.

Parameters:

Name Type Description Default
fname str

The filename where the visualization should be saved.

required
isotype_encoding list

The list of the isotype labels to use.

None
show_legend bool

Optionally display the legend of the isotype colors (default=True).

False
show_labels bool

label the nodes by the sequence label

True
hide_underscore bool

internal nodes that undergo refinement will have an underscore and copy number appended to the label. Setting this to true hides the underscore during visualization and retains only the original label.

True
color_encoding dict

optional dictionary that maps isotype encoding to a color, if None, the default color palette is used.

None
dot bool

if the file should be saved as a dot file, otherwise it will be saved as a png or pdf, depending on the file exentsion of fname

False
Source code in tribal/lineage_tree.py
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def draw(self,
        fname,
        isotype_encoding=None,
        show_legend=False,
        show_labels=True,
        hide_underscore=True,
        color_encoding = None,
        dot = False):
    """Visualization of the current B cell lineage tree saves as a png or pdf.

    Parameters
    ----------
    fname : str
        The filename where the visualization should be saved.  
    isotype_encoding : list
        The list of the isotype labels to use.  
    show_legend : bool
        Optionally display the legend of the isotype colors (default=True).  
    show_labels : bool
        label the nodes by the sequence label
    hide_underscore : bool
        internal nodes that undergo refinement will have an underscore and copy number appended
        to the label. Setting this to true hides the underscore during visualization and retains 
        only the original label.
    color_encoding : dict, optional
        optional dictionary that maps isotype encoding to a color, if None, the default
        color palette is used.
    dot : bool
        if the file should be saved as a dot file, otherwise it will be saved
        as a png or pdf, depending on the file exentsion of fname
    """
    parents = self.get_parents()
    dt = DrawTree(parents, 
                self.isotypes,
                show_legend=show_legend,
                root=self.root,
                isotype_encoding=isotype_encoding,
                show_labels=show_labels,
                hide_underscore=hide_underscore,
                color_encoding=color_encoding)
    if not dot:
        dt.save(fname)
    else:
        dt.save_dot(fname)

get_edge_dataframe()

Obtain the edge list of the lineage tree as a pandas.DataFrame.

Source code in tribal/lineage_tree.py
411
412
413
def get_edge_dataframe(self):
    """Obtain the edge list of the lineage tree as a pandas.DataFrame."""
    return self.tree.get_edge_df()

get_id()

Get the internal id of the tree topology. Useful for mapping refined trees back the to the unrefined tree in the parsimony forest.

Returns:

Type Description
int

the internal id of the tree topology

Source code in tribal/lineage_tree.py
126
127
128
129
130
131
132
133
134
def get_id(self):
    """Get the internal id of the tree topology. Useful for mapping refined trees back the to the unrefined tree in the parsimony forest.

    Returns
    -------
    : int
        the internal id of the tree topology
    """
    return self.tree.id

get_leafs()

Identify the leafset of the lineage tree.

Returns:

Type Description
the leafset of the lineage tree.
Source code in tribal/lineage_tree.py
367
368
369
370
371
372
373
374
375
376
def get_leafs(self):
    """
    Identify the leafset of the lineage tree.

    Returns
    -------
        the leafset of the lineage tree.

    """
    return self.tree.get_leafs()

get_parents()

Identify the part of each node in the lineage tree.

Returns:

Type Description
a mapping of each node in the lineage tree to its parent node.
Source code in tribal/lineage_tree.py
378
379
380
381
382
383
384
385
386
def get_parents(self):
    """Identify the part of each node in the lineage tree.

    Returns
    -------
        a mapping of each node in the lineage tree to its parent node.

    """
    return self.tree.get_parents()

is_leaf(n)

Check if node is a leaf.

Source code in tribal/lineage_tree.py
362
363
364
def is_leaf(self,n):
    """Check if node is a leaf."""
    return self.tree.is_leaf(n)

isotype_parsimony(isotype_labels, transmat)

Infer the isotype of the B cell lineage tree using weighted parsimony.

Parameters:

Name Type Description Default
isotype_labels dict

a dictionary with leaf labels and root id as keys and isotypes as values.

required
transmat array

the isotype transition probability used to compute the CSR likelihood.

required

Examples:

Here is an example of how to infer isotypes::

    from tribal import clonotypes, probabilities, LineageTree

    id = "Clonotype_1036"
    clonotype = clonotypes[id]
    forest = clonotype.get_forest()
    lt = LineageTree(id=id, tree = forest[0] )
    csr_likelihood, isotypes = lt.isotype_parsimony(isotype_labels= clonotype.isotypes,
                                                                transmat=probabilities )
    print(lt)

Returns:

Name Type Description
csr_obj float

a float with the class switch recombination likelihood score for the lineage tree.

isotypes dict

a dictionary containing the isotypes of the lineage tree.

Source code in tribal/lineage_tree.py
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
def isotype_parsimony(self, isotype_labels:dict, transmat:np.array):
    """Infer the isotype of the B cell lineage tree using weighted parsimony.

    Parameters
    ----------
    isotype_labels : dict
        a dictionary with leaf labels and root id as keys and isotypes as values.  
    transmat : numpy.array
        the isotype transition probability used to compute the CSR likelihood.  

    Examples
    --------
    Here is an example of how to infer isotypes::

    ```python
        from tribal import clonotypes, probabilities, LineageTree

        id = "Clonotype_1036"
        clonotype = clonotypes[id]
        forest = clonotype.get_forest()
        lt = LineageTree(id=id, tree = forest[0] )
        csr_likelihood, isotypes = lt.isotype_parsimony(isotype_labels= clonotype.isotypes,
                                                                    transmat=probabilities )
        print(lt)
    ```

    Returns
    -------
    csr_obj : float
        a float with the class switch recombination likelihood score for the lineage tree.  
    isotypes : dict
        a dictionary containing the isotypes of the lineage tree.  
    """
    transmat = -np.log(transmat)
    states = list(range(transmat.shape[0]))
    sp = SmallParsimony(self.tree, alphabet=states,cost=transmat)
    self.csr_obj, self.isotypes = sp.sankoff(isotype_labels)

parent(n)

Identify the parent of a specified node.

Parameters:

Name Type Description Default
n

id of query node.

required

Returns:

Type Description
the parent of query node n.
Source code in tribal/lineage_tree.py
333
334
335
336
337
338
339
340
341
342
343
344
345
def parent(self,n):
    """Identify the parent of a specified node.

    Parameters
    ----------
    n: str | int
        id of query node.

    Returns
    -------
       the parent of query node n.
    """
    return self.tree.parent(n)

postorder_traversal()

Perform a postorder traversal of the lineage tree.

Source code in tribal/lineage_tree.py
324
325
326
def postorder_traversal(self) -> list:
    """Perform a postorder traversal of the lineage tree."""
    return self.tree.postorder_traversal()

preorder_traversal()

Perform a preorder traversal of the lineage tree.

Source code in tribal/lineage_tree.py
329
330
331
def preorder_traversal(self) -> list:
    """Perform a preorder traversal of the lineage tree."""
    return self.tree.preorder_traversal()

refinement(isotype_labels, transmat)

Solves the most parsimonious tree refinement problem (MPTR).

Parameters:

Name Type Description Default
isotype_labels dict

A dictionary with leaf labels and root id as keys and isotypes as values.

required
transmat array

The isotype transition probability used to compute the CSR likelihood.

required

Examples:

Here is an example of how to refine a lineage tree:

from tribal import clonotypes, probabilities, LineageTree

id = "Clonotype_1036"
clonotype = clonotypes[id]
forest = clonotype.get_forest()
lt = LineageTree(id=id, tree=forest[0])
csr_likelihood, isotypes = lt.refinement(isotype_labels=clonotype.isotypes, transmat=probabilities)
print(lt)

Returns:

Type Description
float

A float with the class switch recombination likelihood score for the lineage tree.

dict

A dictionary containing the isotypes of the lineage tree.

Source code in tribal/lineage_tree.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def refinement(self, isotype_labels: Dict[str, str], transmat: np.ndarray) -> Tuple[float, Dict[str, str]]:
    """Solves the most parsimonious tree refinement problem (MPTR).

    Parameters
    ----------
    isotype_labels : dict
        A dictionary with leaf labels and root id as keys and isotypes as values.
    transmat : numpy.array
        The isotype transition probability used to compute the CSR likelihood.

    Examples
    --------
    Here is an example of how to refine a lineage tree:

    ```python
    from tribal import clonotypes, probabilities, LineageTree

    id = "Clonotype_1036"
    clonotype = clonotypes[id]
    forest = clonotype.get_forest()
    lt = LineageTree(id=id, tree=forest[0])
    csr_likelihood, isotypes = lt.refinement(isotype_labels=clonotype.isotypes, transmat=probabilities)
    print(lt)
    ```

    Returns
    -------
    float
        A float with the class switch recombination likelihood score for the lineage tree.  

    dict
        A dictionary containing the isotypes of the lineage tree.  
    """
    cost = -np.log(transmat)
    cg = ConstructGraph(cost, isotype_labels, root_identifier=self.root)
    fg = cg.build(self.tree)

    st = MPTR(fg.G,
              self.tree.T,
              fg.find_terminals(),
              fg.iso_weights,
              fg.tree_to_graph,
              root=self.root)

    self.csr_obj, tree = st.run()

    tree, self.isotypes = cg.decodeTree(tree)
    self.tree = BaseTree(tree, self.root, self.tree.id, self.tree.name)

    return self.csr_obj, self.isotypes

save_edges(fname)

Write the edge list of a lineage tree to a file.

Parameters:

Name Type Description Default
fname str

filename to where edge list should be saved

required
Source code in tribal/lineage_tree.py
400
401
402
403
404
405
406
407
408
def save_edges(self, fname):
    """Write the edge list of a lineage tree to a file.

    Parameters
    ----------
    fname : str
        filename to where edge list should be saved 
    """
    self.tree.save_edges(fname)

save_tree(fname)

Write the parent dictionary of the lineage tree to a file.

Parameters:

Name Type Description Default
fname str

filename where the file should be saved

required
Source code in tribal/lineage_tree.py
389
390
391
392
393
394
395
396
397
398
def save_tree(self,fname):
    """Write the parent dictionary of the lineage tree to a file.

    Parameters
    ----------
    fname : str
        filename where the file should be saved 
    """
    parents = self.get_parents()
    save_dict( parents, fname)

to_pickle(fname)

Pickle the B cell lineage tree.

Parameters:

Name Type Description Default
fname str

the path to where the pickled object should be saved,

required
Source code in tribal/lineage_tree.py
80
81
82
83
84
85
86
87
88
89
def to_pickle(self, fname):
    """Pickle the B cell lineage tree.

    Parameters
    ----------
    fname : str
        the path to where the pickled object should be saved,
    """
    with open(fname, 'wb') as file:
        pickle.dump(self, file)

write(outpath, isotype_encoding=None, tree_label=None)

Write the lineage tree data to files.

Parameters:

Name Type Description Default
outpath str

the path to file the files should be written.

required
isotype_encoding list

the ordered isotype labels

None
Source code in tribal/lineage_tree.py
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
def write(self, outpath:str, isotype_encoding=None, tree_label=None):
    """Write the lineage tree data to files.

    Parameters
    ----------
    outpath : str
        the path to file the files should be written.  
    isotype_encoding : list, optional
        the ordered isotype labels  
    """
    if tree_label is None:
        tree_label = ""
    else:
        tree_label = f"{tree_label}"
    clono_name = self.clonotype
    if isotype_encoding is not None:
        isotypes = {}
        for key, iso in self.isotypes.items():
            if iso >=0 and iso < len(isotype_encoding):
                isotypes[key] = isotype_encoding[iso]
            else:
                isotypes[key] = iso
        isotype_encoding = isotype_encoding

    else:
        isotypes = self.isotypes
        isotype_encoding = None


    if not os.path.exists(outpath):
        os.makedirs(outpath)

    write_fasta(f"{outpath}/{clono_name}_sequences{tree_label}.fasta", self.sequences)
    save_dict(f"{outpath}/{clono_name}_isotypes{tree_label}.csv",isotypes)
    self.save_edges(f"{outpath}/{clono_name}_edge_list{tree_label}.txt")
    self.draw(f"{outpath}/{clono_name}_tree{tree_label}.png",
                isotype_encoding=isotype_encoding,
                hide_underscore=False,
                show_legend=True)